De Koolhydraat-hypothese van Obesitas kritisch bekeken
Wat ik wil bespreken, is een hypothese. Het is het idee, verdedigd door Gary Taubes, dat koolhydraten (met name geraffineerde koolhydraten) de belangrijkste oorzaak zijn van veel voorkomende obesitas vanwege het vermogen om insuline te verhogen, waardoor een verhoogde vetopslag in vetcellen wordt veroorzaakt. Om aan te tonen dat ik deze hypothese nauwkeurig weergeef, is hier een citaat uit zijn boek Good Calories, Bad Calories:
“Deze alternatieve hypothese van obesitas vormt drie verschillende stellingen. Ten eerste, is de stelling dat zwaarlijvigheid wordt veroorzaakt door een regulerend defect in het vetmetabolisme, en dus een defect in de verdeling van energie in plaats van een onbalans in energie-inname en -uitgaven. De tweede is dat insuline een primaire rol speelt in dit vetmestingsproces en het compenserende gedrag van honger en lethargie. De derde is dat koolhydraten, en in het bijzonder geraffineerde koolhydraten en dus misschien de hoeveelheid geconsumeerde suikers – de hoofdverdachten zijn bij de chronische verhoging van insuline; vandaar dat ze de ultieme oorzaak zijn van gewone obesitas.
Er zijn drie invalshoeken in deze theorie en die moeten we elk afzonderlijk bekijken.
-
Een Defect in het Vet-metabolisme?
Het eerste deel van deze hypothese stelt dat energiebalans niet de ultieme oorzaak is van vetopslag, maar de proximale oorzaak. Dat wil zeggen, Taubes is het niet oneens met de eerste wet van de thermodynamica: hij begrijpt dat vetophoping afhangt van hoeveel energie het lichaam binnenkomt of verlaat. Hij is echter van mening dat de hele geïndustrialiseerde wereld niet zomaar op een ochtend wakker werd en besloot om meer calorieën te eten, daarom moet er iets zijn dat het verhoogde calorieverbruik aandrijft.
Hij citeert het onderzoek van Drs. Jules Hirsch en Rudy Leibel, verschillende onderzoeken naar ondervoeding en overvoeding, lipectomieonderzoeken en bewijs van genetisch zwaarlijvige knaagdieren, om aan te tonen dat lichaamsvet biologisch wordt gereguleerd en niet het passieve resultaat is van vrijwillige voedselinname en bewegingsgedrag. Vervolgens brengt hij het idee naar voren dat het een wijziging is in dit reguleringssysteem voor lichaamsvet dat achter obesitas zit.
Dit is waar hij de leptinesignalering had moeten noemen, en de circuits in de hersenen die de lichaamsvetmassa reguleren, wat het boek in een meer dwingende richting zou hebben geleid. Volgens letterlijk duizenden publicaties die bijna twee eeuwen beslaan, zijn de hersenen het enige orgaan waarvan bekend is dat het de lichaamsvetmassa bij mensen en andere dieren reguleert – noch het vetweefsel zelf, noch de insuline-uitscheidende alvleesklier hebben het vermogen om lichaamsvet te reguleren; massa voor zover we momenteel weten. Leptine is het systeem dat Drs. Jules Hirsch en Rudy Leibel in zorgvuldig gecontroleerde studies bij mensen hebben aangetoond dat het verantwoordelijk is voor het metabole defect waarop Taubes zinspeelde. Het is ook het systeem dat is gemuteerd in de genetisch zwaarlijvige knaagdieren die hij bespreekt. Toch krijgt het geen vermelding in het boek. Dit is een splitsing in de weg, waar Taubes een solide hypothese verwerpt ten gunste van een wankele.
Maar ik zou daar de factor enzymen willen aan toevoegen. Hoewel het geen wetenschappelijke verklaring daarvoor geeft, bood het boek van Patrick Geryl ‘Slank en Gezond” een succesvolle formule om meer lichaamsvet te verliezen. Niet door minder koolhydraten te eten, maar door levende voeding te gebruiken en correct te combineren. Dit volgt het pad van meer enzymen en daarom meer regulerende kracht en praktische gebruiksondersteuning van de gebruikte calorieën, naast een verhoging van de natuurlijke vezels en een activatie van de darmbeweging, herstel van het microbioom…
2. De Rol van Insuline in de Vet-opslag
Insuline heeft veel functies in het lichaam. De primaire rol van insuline is het beheersen van circulerende concentraties van voedingsstoffen (voornamelijk glucose, aminozuren en vetzuren, de drie belangrijkste brandstoffen van het lichaam), ze binnen een optimaal bereik te houden en de verschuiving tussen metabolische brandstoffen te coördineren die nodig is wanneer een persoon verbruikt meer van de een of de ander. Elke keer dat insuline de vetverbranding onderdrukt, verhoogt het de verbranding van koolhydraten en/of eiwitten met een gelijkwaardige hoeveelheid. Dat is wat insuline doet.
Insuline heeft een aantal effecten op vet en weefsels die de opslag van vet bevorderen en de vetverbranding onderdrukken, en dit is de kern van het fundamentele argument van Taubes ter ondersteuning van het idee dat insuline vetophoping veroorzaakt. Sommige van deze acties worden al tientallen jaren erkend. Het idee van Taubes is zo eenvoudig dat je zou denken dat iemand er al aan had gedacht. In feite bestaat het idee al een hele tijd, maar het heeft weinig grip bij obesitasonderzoekers, omdat het niet past bij een verscheidenheid aan basiswaarnemingen, zoals ik zal uitleggen.
De reden dat insuline de vetverbranding onderdrukt, is omdat het een signaal is van een overvloed aan glucose. Het vertelt weefsels dat ze moeten stoppen met vetverbranding, omdat koolhydraten de beschikbare brandstof is. Als je een maaltijd eet van 500 calorieën koolhydraten, dan verbrand je die koolhydraten onder leiding van insuline, wat er ook voor zorgt dat lichaamsvet tijdens het proces grotendeels in je vetcellen blijft. Als je een maaltijd met 500 calorieën vet eet, verbrand je vet in plaats van koolhydraten, maar omdat je alleen maar vet at, duik je niet meer in je lichaamsvetopslag dan toen je koolhydraten at. Dus ook al onderdrukt insuline tijdelijk de vetverbranding en het vrijkomen van vet uit vetcellen als je koolhydraten eet, aan het eind van de dag, als je hetzelfde aantal calorieën eet, krijg je hoe dan ook dezelfde hoeveelheid vet in je vetcellen. Je weet nu meer over insuline dan veel populaire dieetgoeroes.
Omdat de eerste wet van de thermodynamica van toepassing is op mensen, moet insuline om vetgroei te veroorzaken ofwel de energie-inname verhogen, het energieverbruik verlagen, of beide. Eens kijken of dat waar is.
Laten we kijken naar het effect van insuline op voedselinname. Laten we, om het zo realistisch mogelijk te houden, verzadiging en daaropvolgende voedselinname vergelijken met voedingsmiddelen die in verschillende mate insuline verhogen. Als calorieën en eiwitten hetzelfde worden gehouden, veroorzaken maaltijden met veel koolhydraten evenveel of meer verzadiging dan maaltijden met een hoog vetgehalte en een gelijk of minder voedselinname, ondanks een veel grotere insulinerespons. Vanwege het insulinestimulerende effect van eiwitten kunnen koolhydraatarme eiwitrijke maaltijden soms de insuline in gelijke of grotere mate stimuleren dan koolhydraatrijke maaltijden, maar zelfs in deze gevallen wordt een hogere insulineafgifte geassocieerd met een verhoogde verzadiging. Experimenten waarbij onderzoekers vrijwilligers eiwitrijk voedsel geven dat insuline in verschillende mate stimuleert, laten zien dat de hoeveelheid verzadiging positief gecorreleerd is met de mate van insulineafgifte, wat niet consistent is met het idee dat insuline de voedselopname stimuleert. Op de lange termijn onderdrukken koolhydraatarme diëten de eetlust bij veel mensen met overgewicht / obesitas, maar het is onwaarschijnlijk dat dit verband houdt met insuline.
Als verhoogde insuline leidt tot verhoogde vetopslag en verhoogde voedselopname, dan zou experimenteel verhoging van insuline bij dieren dit moeten repliceren (aangezien insuline op dezelfde manier inwerkt op vetcellen bij mensen en niet-menselijke zoogdieren). Dit wordt echter niet in acht genomen. Insuline-injecties in een dosis die geen duidelijke hypoglykemie veroorzaken, verhogen de voedselinname niet en in sommige gevallen verminderen ze deze zelfs. Chronisch toenemende circulerende insuline zonder hypoglykemie te veroorzaken, vermindert de voedselopname en het lichaamsgewicht bij niet-diabetische dieren, zonder ziekte te veroorzaken, in tegenstelling tot wat dit idee zou voorspellen. Insuline beperkt in ieder geval de voedselopname en lichaamsvet, en uit onderzoek blijkt dat deze actie via de hersenen plaatsvindt. Insuline die in de hersenen van bavianen wordt ingebracht, veroorzaakt een onderdrukking van de eetlust en vetverlies, wat consistent is met het feit dat insuline en leptine overlappende functies in de hersenen hebben. Het uitschakelen van insulinereceptoren in de hersenen leidt tot een grotere vetmassa bij knaagdieren, wat suggereert dat de normale functie ervan een beperking van de vetmassa inhoudt. Insuline wordt ook samen met amyline uitgescheiden, dat de voedselopname en het lichaamsgewicht onderdrukt. Dit is de reden waarom insuline door sommige obesitasonderzoekers wordt beschouwd als een anti-obesitashormoon.
Laten we nu kijken naar het energieverbruik. Als insuline de vetophoping verhoogt als gevolg van een afname van het energieverbruik (waarschijnlijk omdat een verhoogde insuline het vet vasthoudt in vetcellen), dan zouden mensen met een hogere nuchtere insuline een lager energieverbruik in rust moeten hebben. Gelukkig voor ons is die hypothese getest. Ten minste twee onderzoeken hebben aangetoond dat een hogere nuchtere insuline geassocieerd is met een hoger energieverbruik in rust, onafhankelijk van lichaamsvet, niet een lager energieverbruik. Dit is in ieder geval het tegenovergestelde van wat de hypothese zou voorspellen. Hoe zit het met insulinepieken na de maaltijd als gevolg van het eten van koolhydraten? Een aantal onderzoeken heeft consequent aangetoond dat onder isocalorische gecontroleerde omstandigheden aanzienlijk verschillende koolhydraat: vetverhoudingen het energieverbruik niet meetbaar beïnvloeden, zelfs niet over lange perioden.
Daarom, als insuline de energie-inname niet verhoogt (als er iets is, de combinatie van insuline en amyline die de alvleesklier afgeeft als reactie op koolhydraten, verlaagt), en het energieverbruik niet verlaagt, hoe moet het dan precies energie-accumulatie veroorzaken? in het lichaam als vet?
Zwaarlijvige mensen zijn zwaarlijvig ondanks het feit dat ze een hogere nuchtere insuline hebben, niet daardoor. Het is een feit dat insulinepieken na maaltijden tijdelijk de vetafgifte uit vetcellen verminderen, maar als je kijkt naar de totale energiebalans van 24 uur, veroorzaken insulinepieken, in combinatie met alle andere hormonen die vrijkomen als reactie op voedselinname, geen vetaccumulatie. Dit is precies hoe je zou verwachten dat het systeem zou werken als het ontworpen was om constructief om te gaan met een verscheidenheid aan macronutriëntenverhoudingen, en dat is het ook. Net zoals cholesterol niet evolueerde om ons hartaanvallen te bezorgen, evolueerde insuline niet om ons dik te maken.
Laten we eens kijken naar de argumenten die worden gebruikt om de insulinehypothese van obesitas te ondersteunen. Deze omvatten:
- Type I diabetici, die niet genoeg insuline produceren, verliezen vet.
- Dieren zonder insulinereceptoren op vetcellen zijn resistent tegen vetaanwinst.
- Insulinetherapie zorgt vaak voor vetgroei bij diabetici.
- Herhaalde insuline-injectie op dezelfde plaats veroorzaakt vetophoping op die plaats (lipoom).
- Twee medicijnen die de insulinesecretie onderdrukken, diazoxide en octreotide, veroorzaken soms gewichtsverlies in gecontroleerde onderzoeken.
Deze waarnemingen zijn nauwkeurig en in één oogopslag lijken ze de hypothese te ondersteunen. Het manipuleren van insulinesignalering kan de vetmassa veranderen, en zwaarlijvige mensen hebben een hogere insuline, dus het moet betrokken zijn bij obesitas, toch? Helaas vallen deze argumenten uit elkaar bij nader onderzoek, niet omdat ze gebaseerd zijn op onnauwkeurige waarnemingen, maar omdat ze niet relevant zijn voor gewone obesitas. Bij zwaarlijvigheid, zoals bij de meeste andere aandoeningen waarbij insuline hoog is, is verhoogde insuline een symptoom van insulineresistentie, en de twee treden parallel op. De alvleesklier scheidt meer insuline af omdat de weefsels het niet kunnen “horen”, dus hebben ze er meer insuline voor nodig. Hoe meer insulineresistentie, hoe meer insuline. Het belangrijkste punt hier is dat verhoogde insuline bij obesitas een compenserende reactie is op insulineresistentie, d.w.z. een verminderd insulinesignaal. De cellen zien niet meer insulinesignalering, omdat ze insulineresistent zijn, dus het heeft geen zin om een verhoogde insulinewerking op te roepen om veel voorkomende obesitas te verklaren. Maar wat zit daarachter? In een eerder artikel over diabetes en zuivelgebruik wordt dat haarfijn uitgelegd. Dr. Neal Barnard ziet vooral kaas als een oorzaak van diabetes en insulineresistentie.
De bovenstaande argumenten zijn gevallen waarin het insulinegehalte en / of de insulinegevoeligheid onafhankelijk van elkaar veranderen, hetzij door een pathologisch proces (auto-immuniteit van eilandjes), genetische manipulatie (knock-out van de vetcel-insulinereceptor), of door medicijnen. Dit is de reden waarom ze niet relevant zijn voor gewone zwaarlijvigheid, waarbij insulinespiegels en insulineresistentie parallel stijgen, zodat de totale insuline-actie gehandhaafd of verminderd wordt. Als we een experiment willen doen dat echt relevant is voor de vraag, kunnen we diermodellen gebruiken die genetisch zijn gemanipuleerd om de insulinegevoeligheid te behouden als reactie op vetmestende diëten, die zoals verwacht de toename van insuline elimineert die doorgaans wordt waargenomen bij deze diëten. Deze experimenten tonen aan dat de accumulatie van vetmassa niet consistent verschilt tussen dieren die een toename van insuline ervaren en dieren die dat niet doen – ze worden allemaal ongeveer even snel dik.
Naast wat ik zojuist heb uitgelegd, zijn zowel diazoxide als octreotide extreem niet-specifieke medicijnen die werken in de hypothalamus (hersenen) waarvan wordt verwacht dat ze de vetmassa beïnvloeden, dus we hebben eigenlijk geen idee of ze werken door het verminderen van circulerende insulinespiegels of via een ander mechanisme.
Het idee van vetvermeerdering bij met insuline behandelde diabetici is niet zo luchtdicht als het op het eerste gezicht lijkt. Diabetici krijgen gemiddeld wel vet als ze een insulinetherapie starten met kortwerkende insulines. Dit komt gedeeltelijk doordat insuline hen ervan weerhoudt glucose (glycosurie) uit te plassen tot een paar honderd calorieën per dag. Het komt ook doordat er niet genoeg insuline in de buurt is om de afgifte van vet uit vetcellen (lipolyse) te beperken, wat een van de taken van insuline is, zoals hierboven beschreven. Wanneer je dit (absoluut of relatief) insulinetekort corrigeert, zal een diabetespatiënt doorgaans in gewicht toenemen. Bovendien zijn kortwerkende insulines moeilijk onder controle te houden en veroorzaken ze vaak episodes waarin de glucosespiegel te laag daalt (hypoglykemie), wat een krachtige trigger is voor voedselinname en vetgroei.
Dus wat gebeurt er als je insuline toedient aan minder ernstige diabetici die niet veel glycosurie hebben, en je een type insuline gebruikt dat stabieler is in de bloedbaan en dus minder hypoglykemische episodes veroorzaakt? Dit werd onlangs aangepakt door de omvangrijke ORIGIN-proef. Onderzoekers hebben 12.537 diabetici of pre-diabetici gerandomiseerd naar insulinetherapie of behandeling zoals gewoonlijk, en volgden hen gedurende 6 jaar. De insulinegroep ontving insuline glargine, een vorm van langwerkende “basale” insuline die de basislijninsuline gedurende de dag en nacht verhoogt. In deze studie bracht insulinebehandeling nuchtere glucose gemiddeld van 125 naar 93 mg / dL, dus het was duidelijk een dosis die hoog genoeg was om zinvolle biologische effecten te hebben. Na 6 jaar van uiteenlopende insulinespiegels was het verschil in lichaamsgewicht slechts 2,1 kg, wat op zijn minst gedeeltelijk wordt verklaard door het feit dat de insulinegroep meer hypoglykemische episodes had en minder metformine (een diabetesmedicijn dat vetverlies). Uit een eerdere studie bleek dat drie verschillende soorten langwerkende insuline in drie maanden tijd eigenlijk een licht gewichtsverlies veroorzaakten. Dit is moeilijk te rijmen met het idee dat verhoogde nuchtere insuline zo dikmakend is als wordt beweerd.
Bij obesitas is vetweefsel insulineresistent. Het vetweefsel van zwaarlijvige mensen onderdrukt de afgifte van vetzuren als reactie op experimenteel verhoogde insuline of gemengde maaltijden niet zo effectief als het vetweefsel van een magere persoon. In feite geven zwaarlijvige mensen een gelijke of grotere hoeveelheid vetzuren uit hun vetweefsel af dan magere mensen ook onder basale omstandigheden. Als dit waar is, waarom blijven ze dan zwaarlijvig? Het is simpel: de snelheid waarmee vet op de lange termijn de vetcellen binnendringt, is gelijk aan de snelheid die de vetcellen verlaat, of hoger. Er is geen defect in het vermogen van vetcellen om vet af te geven bij obesitas, het probleem is dat het vet dat vrijkomt niet wordt geoxideerd (verbrand) met een snelheid die hoger is dan wat er uit de voeding binnenkomt, dus het komt allemaal terecht terug in het vetweefsel.
Laten we het idee van “interne hongersnood” bespreken. Taubes suggereert dat mensen te veel eten omdat ze geen toegang hebben tot hun vetreserves vanwege verhoogde insuline. Zwaarlijvige mensen hebben echter normale of verhoogde niveaus van circulerend vet, dus hoe is dat mogelijk? Het interne hongermodel was interessant, zij het speculatief, op het moment dat het werd voorgesteld, maar het bewijs daarvoor is gewoon niet uitgekomen. Obesitas is in ieder geval een toestand van “interne overmaat“. Misschien is het toch de bescheidener verbranding, de zuinigheid, waar een obers persoon mee worstelt; de lagere lichaamstemperatuur, of de “vettostaat” zoals beschreven in Slank&Gezond.
Laten we ook ingaan op de bewering dat zwaarlijvige mensen niet noodzakelijk meer eten dan slanke mensen. Voedselrecords zijn notoir onnauwkeurig, maar er is minstens één manier om de totale energie-inname op een nauwkeurige en onbevooroordeelde manier te meten. Het wordt de “dubbel gelabelde watermethode” (DLW) genoemd. DLW-onderzoeken hebben aangetoond dat zwaarlijvige mensen, na correctie voor verstorende factoren (geslacht, leeftijd, fysieke activiteit), bijna altijd meer verbruiken en meer calorieën consumeren dan magere mensen. Gewichtstabiele zwaarlijvige mensen hebben een hogere energieflux uit vetcellen en een hogere stofwisseling, maar het is niet genoeg om de hogere calorie-inname die ook wordt waargenomen te boven te komen. Dat is herhaaldelijk bevestigd en het is op dit moment gewoon een feit.
Als verhoogde insuline leidt tot vetaanwinst, dan moet dit wetenschappelijk waarneembaar zijn. Het enige wat we hoeven te doen is zoeken naar mensen met verschillende niveaus van circulerende insuline (controleren op basislijnvetmassa), en kijken of dit de vetgroei in de loop van de tijd voorspelt. Gelukkig is dit vele malen onderzocht. In de meeste onderzoeken zijn de insulinespiegels niet gerelateerd aan toekomstige vetgroei, of krijgen mensen met een hogere nuchtere insuline bij aanvang in de loop van de tijd zelfs minder vet dan mensen met een lagere nuchtere insuline. In de meest recente studie werd een hogere insuline (en insulineresistentie) bij aanvang geassocieerd met minder vetgroei in de loop van de tijd, maar deze relatie werd geëlimineerd door te corrigeren voor de vetmassa bij aanvang, waardoor er na aanpassing geen verband meer was tussen insuline en vet-toename. Ik zie niet in hoe dit kan worden verzoend met het idee dat verhoogde nuchtere insuline de oorzaak is van veel voorkomende obesitas.
Daarom is de insulinehypothese niet consistent met de basisthermodynamica, het is niet consistent met onderzoek naar de biologische functies van insuline, en het is niet consistent met observationele studies. Zwaarlijvige mensen hebben geen defect in het vermogen om vet uit vetcellen vrij te maken en te verbranden, integendeel. Ze maken meer vet vrij uit vetcellen dan magere mensen, en verbranden er meer van. Dit wordt echter gecompenseerd door een hogere energie-inname en een hogere vetopname in vetcellen, wat de toegenomen uitgaven compenseert. Dit toont aan dat insuline geen zwaarlijvigheid veroorzaakt door direct op vetcellen in te werken om vetopslag te veroorzaken. Om obesitas te begrijpen, moeten we begrijpen wat een verhoogde voedselinname veroorzaakt, en die factor is niet insuline.
2bis – Inzichten uit de Menselijke Genetica
Genetische studies kunnen ons belangrijke aanwijzingen geven over de biologische processen die ten grondslag liggen aan veel voorkomende ziekten. Veel voorkomende genetische varianten die verband houden met het risico op diabetes type 2, zitten bijvoorbeeld meestal in genen die de insuline-uitscheidende alvleesklier reguleren. Dit vertelt ons, zoals je zou verwachten, dat de pancreasfunctie belangrijk is bij diabetes. Wat vertelt de genetica ons over de mechanismen van obesitas?
Er zijn een handvol zeldzame mutaties met een enkel gen bij mensen die tot ernstige obesitas leiden. Elke tot nu toe ontdekte die niet ook leidt tot misvorming (niet-fysiologische monogene obesitas) bevindt zich in de leptinesignaleringsroute, en zelfs degenen die wel tot misvorming leiden, hebben allemaal invloed op hoe de hersenen lichaamsvet reguleren, wat suggereert dat lichaamsvet normaal gesproken wordt gereguleerd door de hersenen, niet door vetweefsel. Uit een beoordelingsdocument uit 2009 :
Er zijn nu minstens 20 enkelvoudige genaandoeningen die duidelijk leiden tot een autosomale vorm van menselijke obesitas. Met name hebben al deze stoornissen tot dusver invloed op de centrale [d.w.z. de hersenen] waarneming en controle van de energiebalans.
Genoombrede associatiestudies (GWAS) geven ons een ander perspectief – ze zoeken naar veel voorkomende genetische varianten die geassocieerd worden met een hogere of lagere body mass index (BMI) in de algemene bevolking. Dit zijn geen mutaties die genen niet-functioneel maken, het zijn gewoon veel voorkomende verschillen tussen genen die in sommige gevallen op subtiele wijze hun activiteit beïnvloeden. Van de talrijke veel voorkomende genvarianten waarvan is vastgesteld dat ze associëren met BMI-variabiliteit en waarvan de functie bekend is, wordt de grote meerderheid uitgedrukt in de hersenen, met name de hypothalamus, en sommige bevinden zich in de leptine-signaleringsroute. Daarom doen deze kranten vaak uitspraken als deze:
… als we kijken naar de informatie die we hebben verzameld in de afgelopen 15 jaar over moleculaire genetische activiteit, kunnen we niet ontkomen aan de conclusie dat, net zoals diabetes type 2 duidelijk een ziekte is waarbij pancreas-bètaceldisfunctie een cruciaal element is, en het is duidelijk dat het ook bij obesitas een cruciaal element is. Deze aandoening waarbij de inherente genetische aanleg wordt gedomineerd door de hersenen.
en dit :
Veel van onze geassocieerde loci benadrukken genen die in hoge mate tot expressie komen in de hersenen (en een aantal in het bijzonder in de hypothalamus), wat consistent is met een belangrijke rol voor processen van het CZS [centraal zenuwstelsel] bij gewichtsregulatie.
Als insulinewerking op vetcellen een dominante factor is bij obesitas, waarom verschijnen genen die verband houden met insulinesignalering dan niet bovenaan de lijst in deze onderzoeken? Er zijn genoeg eiwitten die de insulinesecretie in de alvleesklier reguleren en insulinesignalering in vetcellen waarvan je zou verwachten dat genetische variabiliteit in deze genen vaak voorkomt als ze belangrijke regulatoren van de vetmassa zouden zijn, maar in plaats daarvan wordt de lijst gedomineerd door genen die betrekking hebben op de hersenen, en leptinesignalering in het bijzonder. Dit komt overeen met een enorme hoeveelheid literatuur die de hersenen betrekt bij de regulering van de lichaamsvetmassa en de ontwikkeling van obesitas.
De derde opmerking gaat erover dat “Koolhydraten, maar meer specifiek geraffineerde koolhydraten, vetopstapeling veroorzaken door de insuline te verhogen Is dat zo ?
Dat beantwoorden we in onze volgende brief.